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Abstract

Recent research has shown, that debiasing methods often do not reliably increase
fairness in practical applications while simultaneously decreasing a model’s accu-
racy. We study the effect of debiasing methods through a causal lens in order to
develop a better understanding of factors determining whether a debiasing method
works as intended. Simultaneously, a causal perspective on the phenomenon intro-
duces the necessity to differentiate in debiasing methods, between discriminatory
and non-discriminatory causal effects e.g. based on business necessity. Using this
perspective on path specific effects, we study the effects of different debiasing
methods on the underlying causal path specific effects (PSEs), observing empir-
ically that reweighing reduces the direct effect of the protected attribute on the
predicted label, while other PSEs are simultaneously increased. We provide an
explanation for this phenomenon using an information theoretic approach. This
perspective opens up the discussion for a need of incorporating causal perspectives
into the development of debiasing methods in order to better capture the need for
differentiating between discriminatory and non-discriminatory causal pathways.

1 Introduction

Machine Learning is being increasingly used in high-stake decision support systems like university
admissions[Kung and Yu, 2020], criminal justice [Angwin et al., 2016, Berk et al., 2021], credit
decisions [Byanjankar et al., 2015, Malekipirbazari and Aksakalli, 2015], etc. Multiple studies have
established that these systems are unfair and exhibit a discriminatory behaviour against specific
groups based on sensitive attributes like race and gender. In order to increase the fairness of machine
learning systems, multiple debiasing algorithms[Pessach and Shmueli, 2020] have been proposed.
But studies[Agrawal et al., 2020] have shown that this increase in fairness post debiasing is not
statistically significant, and simultaneously decreases model’s accuracy. We use a causal perspective
to analyse the behaviour debiasing methods and draw deeper insights than what is provided by
statistical analysis of fairness.

1.1 Causal Graphs and Notation

Causal Graphs [Pearl, 2009, Pearl et al., 2016] serve as a form for organizing assumptions about
underlying data generating process and to represent decision-making process for ML models. We shall
consider a directed acyclic causal graph, with nodes representing random variables corresponding
to protected attribute Z, a set of non protected attributes, a predictor Ŷ and sometimes observed
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ground truth Y. A directed causal path is a sequence of distinct nodes V1, V2, ...Vk for k ≥ 2, such
that Vi ∈ pa(Vi+1)∀i ∈ {1, ..., k− 1}, where pa(Vi) are the parents of Vi i.e. they causally influence
Vi. Mathematically, the causal model can be presented as a set of equations

Vi = fi(pa(Vi), Ni)∀i ∈ {1, ..., k}
where Ni denotes independent noise variables.

1.2 Metrics for Causal Fairness

Recently, causal notions have garnered attention in fairness as a tool for developing better insights on
the sources of discrimination. Multiple causal notions based on comparing counterfactuals[Kusner
et al., 2017] have been proposed. One of these is path-specific effect(PSE)[Chiappa, 2019]. PSE
allows consideration of the effect of individual causal paths on predictions, thereby providing a greater
analysis of decision making process and the fairness of the model. We employ this metric in our study
to understand the effect of individual causal paths (or a set of paths) on the fairness and accuracy
of our model. These causal paths can be categorised into discriminatory and non-discriminatory
based on whether the path passed through a resolving variable(business necessity) [Kilbertus et al.,
2017]. A causal path V1 → ...→ Vk is non-discriminatory if ∃i ∈ {1..k} such that Vi is a business
necessity for the specific fairness problem. If no such i exists, the path is considered discriminatory.
This categorisation holds in both legal and practical considerations.

1.3 Information Theoretic Analysis of Discrimination

Dutta et al. [2020] provide a information theoretic quantification of fairness by employing partial
information decomposition(PID). For the causal graph in figure 1, with Z as the protected attribute
and Ŷ as the predictor, the mutual information I(Z; (A, B)) about Z in random variables A and B,
available to the predictor Ŷ , can be expressed using PID framework as:

I(Z; (A;B)) = Uni(Z : A\B) + Uni(Z : B\A) +Red(Z : (A;B)) + Syn(Z : (A;B))

Here, Uni(Z : A\B) denotes the unique information component about random variable Z present
only in A and not in B. Similarly, Uni(Z : B\A) denotes the unique information component about Z
present only in B and not in A. Red(Z : (A;B)) denotes the redundant information about Z, present in
both A and B, and Syn(Z : (A;B)) denotes the synergistic information not present in either of A or B
individually, but present jointly in (A;B). Note that the mutual information about protected attribute
through variables considered as business necessity(critical variables) is deemed as non-discriminatory.

2 Experiments

Z

A

B

Ŷ

Figure 1: Causal
graph for Information-
decomposition illustra-
tion in 1.3

We evaluate path-specific effects(PSEs) for three models: Logistic Classi-
fier and its combination with two different debiasing methods. Reweigh-
ing(RW)[Kamiran and Calders, 2012] and Equalized Odds(EOds)[Hardt
et al., 2016] are used as the two debiasing methods. While reweighing
is a preprocessing method, equalized odds is a post-processing method.
Reweighing pre-processes the dataset, thereby resulting in a change in
the underlying data generating processing(DGP) itself. Equalized odds
operates on the predictions from the ML model, hence does not change
underlying DGP.

We use a synthetic causal dataset for Law School Admissions[Kusner
et al., 2017]. The causal model underlying the dataset is shown in figure
2. The dataset has 5 feature variables, of which Race is considered as
the protected attribute for this problem. LSAT and GPA are the business
necessity variables, and thus the causal paths(R→ L→ Ŷ , R→ G→
Ŷ , R → S → L → Ŷ , R → S → G → Ŷ ) originating in Race and
blocked by LSAT or GPA are deemed as non-discriminatory. Other causal
paths originating in Race, R → Ŷ and R → S → Ŷ , are considered
discriminatory.
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Figure 2: Causal Model for Law School Admissions used in experiments

In this study we use the notion of partial debiasing, which allows to
interpolate between no debiasing and full-debiasing. Such interpolation
enables a deeper analysis of the effect of debiasing on causal paths and decision making process.
This interpolation is controlled by a parameter, which we refer in the text as α. The figures 3 and 4
have α on the X-axis, denoting the extent of debiasing.

We observe in figure 3 that the path specific effects(PSEs) show a different behaviour in case of
reweighing and equalized odds. While the PSE decreases for the causal path R → Ŷ in both
debiasers, the PSEs of other causal paths exhibit opposite trends. For the causal paths R→ L→ Ŷ ,
R → G → Ŷ , R → S → L → Ŷ , R → S → G → Ŷ and R → S → Ŷ , the PSE for Equalized
Odds decreases with α, while it increases for Reweighing. Thus, Reweighing increases the use of
non-discriminatory paths while decreasing the use of the R→ Ŷ path, while EOd on the other hand
reduces all effects based on Race.

We also fit a logistic classifier on the predictions and obtain weights for the four features. These
weights are the logistic regression coefficients of the fitted classifier. The weights are plotted for
different values of partial debiasing parameter α in figure 4. Weights of the features reflect the pattern
observed for PSEs in figure 3.

Note that this difference in trends of PSEs of both debiasers is not due to awareness or unawareness
of discriminatory causal paths, but due to the choice of fairness criteria and the construction of
debiaser, as explained in section 3. Equalized Odds reduces PSE of both, discriminatory paths,
while reweighing reduces PSE of one discriminatory path (R→ Ŷ ) and increases PSE of the other
discriminatory path (R → S → Ŷ ) and all non-discriminatory path. Even though Reweighing,
unlike Equalized Odds rightly increases PSE of non-discriminatory paths, it shows different trends
with the two discriminatory causal paths. This is because these trends in PSEs are due to the
construction of debiasers, as stated previously. The debiasing algorithm(reweighing) is unaware of
the set of discriminatory paths, thereby showing different trends for the two discriminatory paths.
This highlights the need for development of debiasing methods which are aware of discriminatory
and non-discriminatory paths.

Methodology We have carefully implemented the debiasing techniques and metrics in our Julia
implementation, to verify that the effects observed are not a result of undiagnosed implementation
issues. The classifier used in all experiments is a logistic classifier provided by the BSD-3 licensed
ScikitLearn.jl [St-Jean, 2021] Julia package. We keep all the hyperparameters as default values to
facilitate comparison across experiments and eliminating the variation due to different hyperparameter
choices. The weights and PSEs are computed over 50 replications for α ∈ {0.00, 0.01, ...1.00} to
eliminate the effect of noise and ascertain statistically significant treatment effect.

3 Information theoretic Perspective on Debiasing

Dutta et al. [2020] divide mutual information about race in Ŷ into 4 mutually exclusive components:
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(a) R → Ŷ (b) R → G → Ŷ

(c) R → L → Ŷ (d) R → S → Ŷ

(e) R → S → G → Ŷ (f) R → S → L → Ŷ

Figure 3: Path based Counterfactual effect for various causal paths and fairness algorithms

I(Race; Ŷ ) =MV ;NE +MM ;NE +MV ;E +MM ;E

Here MV ;NE is the visible non-exempt component, while MM ;NE is the masked non-exempt
component. The exempt component originates in non-discriminatory paths, while the non-exempt
component originates in discriminatory paths and mainly from the direct R→ Ŷ causal path.

Using the partial information decomposition framework stated in section 1.3, we can draw insights on
the behaviour observed in the experiments. On applying reweighing, {Race, Y} stratification is done,
thereby reducing correlation between Race and Y and reducingMV ;NE+MM ;NE . But this reduction
does not affect I(Race; Ŷ ) proportionately due to the presence of redundant and masked information,
which was unused earlier due to direct availability of race variable. Post debiasing, redundant
information Red(Race; (A, B)) provides the mutual information of race. Naturally, this redundant
information comes from indirect (exempt and non-exempt) paths. This is why the path-specific effect
for all the indirect paths (causal paths originating in race, excluding R→ Ŷ ), as observed in figure
3. On the other hand Equalized Odds, by flipping predictions(with certain computed probabilities),
results in a decrease in all mutual information from both race and indirect variables. Thus, EOds
results in a decrease in exempt component along with non-exempt component, thereby resulting in a
large decrease in accuracy. But reweighing increases exempt component, which partially compensates
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(a) Race (b) Sex

(c) GPA (d) LSAT

Figure 4: Weights of different features for Logisitic Classifiers fitted on predictions across α ∈
{0.00, 0.01, ..., 1.00}

for the decrease in non-exempt mutual information, thereby resulting in similar accuracy and higher
fairness.

4 Discussion

In this work we study the effect of debiasing methods through a causal lens. We emperically show
how debiasing methods, in particularly reweighing and equalized odds affect the causal pathways,
which represent the decision making process of the ML model. The information theoretic perspective
explains the reason for trends observed in PSEs. The causal analysis and the PID analysis also
explain the behaviour of debiasing algorithms in observational settings. The extensive evaluation of
debiasing algorithms by [Agrawal et al., 2020] shows that in most datasets, reweighing gives higher
accuracy and a statistically significant increase in fairness compared to Equalized Odds and other
post-processing methods. This behaviour is easily explained by the analysis in sections 2 and 3,
which show that reweighing, in contrast to equalized odds, increases PSEs of non-discriminatory
causal paths in decision making process, and also increases the exempt mutual information of race in
Ŷ .

The causal perspective addresses the limitations of statistical approaches and provides deeper insights
on effect of debiasing methods. We hope that these results are first steps for future research on
incorporating causal perspectives into development of debiasing methods.
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